Spatially Explicit Environmental Factors Associated with Lymphatic Filariasis Infection in American Samoa

Morgan E. Lemin, Angela Cadavid Restrepo, Helen J. Mayfield and Colleen L. Lau

Abstract: Under the Global Program to Eliminate Lymphatic Filariasis (LF) American Samoa conducted seven rounds of mass drug administration (MDA) between 2000 and 2006. Subsequently, the territory passed the WHO recommended school-based transmission assessment survey (TAS) in 2011/2012 (TAS-1) and 2015 (TAS-2) but failed in 2016, when both TAS-3 and a community survey found LF antigen prevalence above what it had been in previous surveys. This study aimed to identify potential environmental drivers of LF to refine future surveillance efforts to detect re-emergence and recurrence. Data on five LF infection markers: antigen, Wb123, Bm14 and Bm33 antibodies and microfilaraemia, were obtained from a population-wide serosurvey conducted in American Samoa in 2016. Spatially explicit data on environmental factors were derived from freely available sources. Separate multivariable Poisson regression models were developed for each infection marker to assess and quantify the associations between LF infection markers and environmental variables. Rangeland, tree cover and urban cover were consistently associated with a higher seroprevalence of LF-infection markers, but to varying magnitudes between landcover classes. High slope gradient, population density and crop cover had a negative association with the seroprevalence of LF infection markers. No association between rainfall and LF infection markers was detected, potentially due to the limited variation in rainfall across the island. This study demonstrated that seroprevalence of LF infection markers were more consistently associated with topographical environmental variables, such as gradient of the slope, rather than climatic variables, such as rainfall. These results provide the initial groundwork to support the detection of areas where LF transmission is more likely to occur, and inform LF elimination efforts through better understanding of the environmental drivers.